Real Python Podcast Episode #191 Title Artwork

Episode 191: Focusing on Data Science & Less on Engineering and Dependencies

The Real Python Podcast

Feb 09, 2024 1h 1m

How do you manage the dependencies of a large-scale data science project? How do you migrate that project from a laptop to cloud infrastructure or utilize GPUs and multiple instances in parallel? This week on the show, Savin Goyal returns to discuss the updates to the open-source framework Metaflow.

Episode Sponsor:

Savin briefly describes the Metaflow platform and the goal of simplifying engineering overhead for data scientists and programmers. We discuss how the platform captures snapshots of a project as you work, allowing you to go back in time or share the state of your project with another team member.

We dig into the complicated process of managing dependencies for machine learning and data science projects. Savin describes how the required external libraries can be specified within a flow with the new @pypi or @conda decorators. This allows a project to scale from a local machine to the cloud or multiple instances with all dependencies included.

He talks about starting a new company, Outerbounds, with fellow co-workers from Netflix. Their vision is to continue to build the Metaflow open-source platform and offer customers scalable enterprise-grade infrastructure.

This week’s episode is brought to you by Intel.

Topics:

  • 00:00:00 – Introduction
  • 00:02:25 – Update on Metaflow
  • 00:04:13 – What is Outerbounds?
  • 00:07:26 – An ML platform to serve data scientists needs
  • 00:13:02 – Dependency reproducibility via @conda and @pypi decorators
  • 00:26:18 – Sponsor: Intel
  • 00:27:10 – Storing lock files along with snapshots
  • 00:29:17 – Working alongside code and dependency management systems
  • 00:34:03 – Scaling a project from laptop to the cloud
  • 00:40:13 – Video Course Spotlight
  • 00:41:41 – Getting visibility on processes
  • 00:47:23 – Adjusting your project due to GPU availability
  • 00:52:27 – Example of jumping back into a project one year later
  • 00:55:54 – What are you excited about in the world of Python?
  • 00:57:39 – What do you want to learn next?
  • 00:59:35 – How can people follow your work online?
  • 01:00:19 – Thanks and goodbye

Show Links: