Join us and get access to hundreds of tutorials and a community of expert Pythonistas.

Unlock This Lesson

This lesson is for members only. Join us and get access to hundreds of tutorials and a community of expert Pythonistas.

Unlock This Lesson

Hint: You can adjust the default video playback speed in your account settings.
Hint: You can set the default subtitles language in your account settings.
Sorry! Looks like there’s an issue with video playback 🙁 This might be due to a temporary outage or because of a configuration issue with your browser. Please see our video player troubleshooting guide to resolve the issue.

Highlighting Data Using the Legend

Give Feedback

In this lesson you will explore the final interactivity example in this tutorial: interactive legends. In this visualization, you’ll see two identical scatter plots comparing the game-by-game points and rebounds of LeBron James and Kevin Durant. The only difference will be that one will use a hide as its click_policy, while the other uses mute.

In this case you will use the existing player_stats DataFrame from read_nba_data.py. You will isolate data using GroupFilter and CDSView.

File: InteractiveLegends.py

# Bokeh Libraries
from bokeh.plotting import figure, show
from bokeh.io import output_file
from bokeh.models import ColumnDataSource, CDSView, GroupFilter
from bokeh.layouts import row

# Import the data
from read_nba_data import player_stats

# Output to a static html file
output_file('lebron_vs_durant.html',
            title='LeBron James vs. Kevin Durant')

# Store the data in a ColumnDataSource
player_gm_stats = ColumnDataSource(player_stats)

# Create a view for each player
lebron_filters = [GroupFilter(column_name='playFNm', group='LeBron'),
                  GroupFilter(column_name='playLNm', group='James')]
lebron_view = CDSView(source=player_gm_stats,
                      filters=lebron_filters)

durant_filters = [GroupFilter(column_name='playFNm', group='Kevin'),
                  GroupFilter(column_name='playLNm', group='Durant')]
durant_view = CDSView(source=player_gm_stats,
                      filters=durant_filters)

# Consolidate the common keyword arguments in dicts
common_figure_kwargs = {
    'plot_width': 400,
    'x_axis_label': 'Points',
    'toolbar_location': None,
}
common_circle_kwargs = {
    'x': 'playPTS',
    'y': 'playTRB',
    'source': player_gm_stats,
    'size': 12,
    'alpha': 0.7,
}
common_lebron_kwargs = {
    'view': lebron_view,
    'color': '#002859',
    'legend': 'LeBron James'
}
common_durant_kwargs = {
    'view': durant_view,
    'color': '#FFC324',
    'legend': 'Kevin Durant',
}

# Create the two figures and draw the data
hide_fig = figure(**common_figure_kwargs,
                  title='Click Legend to HIDE Data',
                  y_axis_label='Rebounds')
hide_fig.circle(**common_circle_kwargs, **common_lebron_kwargs)
hide_fig.circle(**common_circle_kwargs, **common_durant_kwargs)

mute_fig = figure(**common_figure_kwargs, title='Click Legend to MUTE Data')
mute_fig.circle(**common_circle_kwargs, **common_lebron_kwargs,
                muted_alpha=0.1)
mute_fig.circle(**common_circle_kwargs, **common_durant_kwargs,
                muted_alpha=0.1)

# Add interactivity to the legend
hide_fig.legend.click_policy = 'hide'
mute_fig.legend.click_policy = 'mute'

# Visualize
show(row(hide_fig, mute_fig))

Become a Member to join the conversation.