Real Python Podcast Episode #172 Title Artwork

Episode 172: Measuring Multiple Facets of Python Performance With Scalene

The Real Python Podcast

Sep 15, 2023 1h 3m

When choosing a tool for profiling Python code performance, should it focus on the CPU, GPU, memory, or individual lines of code? What if it looked at all those factors and didn’t alter code performance while measuring it? This week on the show, we talk about Scalene with Emery Berger, Professor of Computer Science at the University of Massachusetts Amherst.

Emery talks about his background in memory management and his collaboration on Hoard, a scalable memory manager system used in Mac OS X. We discuss the need for improving code performance on modern computer architecture. He highlights this idea by contrasting the familiar limitations of Moore’s law with the lesser-known rule of Dennard scaling.

Working with his students in the university lab, they developed Scalene. Scalene is a high-performance CPU, GPU, and memory profiler. It can look at code from the individual function or line-by-line level and compare time spent in Python vs C code. Emery talks about the recent Scalene feature of AI-powered optimization proposals and covers a couple of examples. He also shares a collection of additional Python code-assistant tools from their lab.

Topics:

  • 00:00:00 – Introduction
  • 00:02:13 – College of Information and Computer Sciences
  • 00:03:25 – Memory management systems background
  • 00:05:15 – Dennard Scaling vs Moore’s Law
  • 00:10:12 – Starting work on Python profiling
  • 00:15:00 – Deciding on a statistical profiler
  • 00:17:05 – Wanting to trace memory
  • 00:21:21 – Finding memory issues
  • 00:23:59 – Line-by-line analysis
  • 00:25:56 – Video Course Spotlight
  • 00:27:14 – Measuring profiler performance
  • 00:30:30 – Memory leak detection
  • 00:34:31 – When should you run a profiler?
  • 00:37:27 – Considerations for measuring cloud performance
  • 00:39:12 – Working with Jupyter and Conda
  • 00:42:18 – Common issues and AI solutions
  • 00:45:50 – Using a profiler to learn a codebase
  • 00:50:48 – Examples of AI-powered optimizations
  • 00:55:50 – What are you excited about in the world of Python?
  • 00:58:30 – What do you want to learn next?
  • 01:01:48 – How can people follow your work online?
  • 01:02:56 – Thanks and goodbye

Show Links: