Boosting is based on the following question: “Can a set of weak learners create a single strong learner?” A weak learner (or weak classifier) is defined as a classifier that is only slightly better than random guessing.
In face detection, this means that a weak learner can classify a subregion of an image as a face or not-face only slightly better than random guessing. A strong learner is substantially better at picking faces from non-faces.
The power of boosting comes from combining many (thousands) of weak classifiers into a single strong classifier. In the Viola-Jones algorithm, each Haar-like feature represents a weak learner. To decide the type and size of a feature that goes into the final classifier, AdaBoost checks the performance of all classifiers that you supply to it.
To calculate the performance of a classifier, you evaluate it on all subregions of all the images used for training. Some subregions will produce a strong response in the classifier. Those will be classified as positives, meaning the classifier thinks it contains a human face.
Subregions that don’t produce a strong response don’t contain a human face, in the classifiers opinion. They will be classified as negatives.