One of the key aspects of supervised machine learning is model evaluation and validation. When you evaluate the predictive performance of your model, it’s essential that the process be unbiased. Using train_test_split()
from the data science library scikit-learn, you can split your dataset into subsets that minimize the potential for bias in your evaluation and validation process.
In this course, you’ll learn:
- Why you need to split your dataset in supervised machine learning
- Which subsets of the dataset you need for an unbiased evaluation of your model
- How to use
train_test_split()
to split your data - How to combine
train_test_split()
with prediction methods
In addition, you’ll get information on related tools from sklearn.model_selection
.
What’s Included:
- 12 Lessons
- Video Subtitles and Full Transcripts
- 1 Downloadable Resource
- Accompanying Text-Based Tutorial
- Interactive Quiz to Check Your Progress
- Q&A With Python Experts: Ask a Question
- Certificate of Completion
Downloadable Resources:
Related Learning Paths: